Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Mol Life Sci ; 81(1): 137, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478109

RESUMO

Improving the function of the blood-spinal cord barrier (BSCB) benefits the functional recovery of mice following spinal cord injury (SCI). The death of endothelial cells and disruption of the BSCB at the injury site contribute to secondary damage, and the ubiquitin-proteasome system is involved in regulating protein function. However, little is known about the regulation of deubiquitinated enzymes in endothelial cells and their effect on BSCB function after SCI. We observed that Sox17 is predominantly localized in endothelial cells and is significantly upregulated after SCI and in LPS-treated brain microvascular endothelial cells. In vitro Sox17 knockdown attenuated endothelial cell proliferation, migration, and tube formation, while in vivo Sox17 knockdown inhibited endothelial regeneration and barrier recovery, leading to poor functional recovery after SCI. Conversely, in vivo overexpression of Sox17 promoted angiogenesis and functional recovery after injury. Additionally, immunoprecipitation-mass spectrometry revealed the interaction between the deubiquitinase UCHL1 and Sox17, which stabilized Sox17 and influenced angiogenesis and BSCB repair following injury. By generating UCHL1 conditional knockout mice and conducting rescue experiments, we further validated that the deubiquitinase UCHL1 promotes angiogenesis and restoration of BSCB function after injury by stabilizing Sox17. Collectively, our findings present a novel therapeutic target for treating SCI by revealing a potential mechanism for endothelial cell regeneration and BSCB repair after SCI.


Assuntos
Células Endoteliais , Traumatismos da Medula Espinal , Animais , Camundongos , Ratos , 60489 , Barreira Hematoencefálica/metabolismo , Enzimas Desubiquitinantes/metabolismo , Células Endoteliais/metabolismo , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacologia , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Fatores de Transcrição SOXF/genética , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
2.
J Neurosci ; 43(9): 1456-1474, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653190

RESUMO

RNA N6-methyladenosine (m6A) modification is involved in diverse biological processes. However, its role in spinal cord injury (SCI) is poorly understood. The m6A level increases in injured spinal cord, and METTL3, which is the core subunit of methyltransferase complex, is upregulated in reactive astrocytes and further stabilized by the USP1/UAF1 complex after SCI. The USP1/UAF1 complex specifically binds to and subsequently removes K48-linked ubiquitination of the METTL3 protein to maintain its stability after SCI. Moreover, conditional knockout of astrocytic METTL3 in both sexes of mice significantly suppressed reactive astrogliosis after SCI, thus resulting in widespread infiltration of inflammatory cells, aggravated neuronal loss, hampered axonal regeneration, and impaired functional recovery. Mechanistically, the YAP1 transcript was identified as a potential target of METTL3 in astrocytes. METTL3 could selectively methylate the 3'-UTR region of the YAP1 transcript, which subsequently maintains its stability in an IGF2BP2-dependent manner. In vivo, YAP1 overexpression by adeno-associated virus injection remarkably contributed to reactive astrogliosis and partly reversed the detrimental effects of METTL3 knockout on functional recovery after SCI. Furthermore, we found that the methyltransferase activity of METTL3 plays an essential role in reactive astrogliosis and motor repair, whereas METTL3 mutant without methyltransferase function failed to promote functional recovery after SCI. Our study reveals the previously unreported role of METTL3-mediated m6A modification in SCI and might provide a potential therapy for SCI.SIGNIFICANCE STATEMENT Spinal cord injury is a devastating trauma of the CNS involving motor and sensory impairments. However, epigenetic modification in spinal cord injury is still unclear. Here, we propose an m6A regulation effect of astrocytic METTL3 following spinal cord injury, and we further characterize its underlying mechanism, which might provide promising strategies for spinal cord injury treatment.


Assuntos
Gliose , Traumatismos da Medula Espinal , Animais , Feminino , Masculino , Camundongos , Astrócitos/metabolismo , Gliose/metabolismo , Inflamação/metabolismo , Metiltransferases/metabolismo , Metiltransferases/farmacologia , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo
3.
Bioact Mater ; 23: 328-342, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36474657

RESUMO

Spinal cord injury (SCI) is a severe disease of the nervous system that causes irreparable damage and loss of function, for which no effective treatments are available to date. Engineered extracellular vesicles (EVs) carrying therapeutic molecules hold promise as an alternative SCI therapy depending on the specific functionalized EVs and the appropriate engineering strategy. In this study, we demonstrated the design of a drug delivery system of peptide CAQK-modified, siRNA-loaded EVs (C-EVs-siRNA) for SCI-targeted therapy. The peptide CAQK was anchored through a chemical modification to the membranes of EVs isolated from induced neural stem cells (iNSCs). CCL2-siRNA was then loaded into the EVs through electroporation. The modified EVs still maintained the basic properties of EVs and showed favorable targeting and therapeutic effects in vitro and in vivo. C-EVs-siRNA specifically delivered siRNA to the SCI region and was taken up by target cells. C-EVs-siRNA used the inherent anti-inflammatory and neuroreparative functions of iNSCs-derived EVs in synergy with the loaded siRNA, thus enhancing the therapeutic effect against SCI. The combination of targeted modified EVs and siRNA effectively regulated the microenvironmental disturbance after SCI, promoted the transformation of microglia/macrophages from M1 to M2 and limited the negative effects of the inflammatory response and neuronal injury on functional recovery in mice after SCI. Thus, engineered EVs are a potentially feasible and efficacious treatment for SCI, and may also be used to develop targeted treatments for other diseases.

4.
Front Genet ; 13: 1006938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313439

RESUMO

Background: Recent studies have identified several molecular subtypes of lung adenocarcinoma (LUAD) that have different prognoses to help predict the efficacy of immunotherapy. However, the prognostic prediction is less than satisfactory. Alterations in intracellular copper levels may affect the tumor immune microenvironment and are linked to cancer progression. Previous studies have identified some genes related to cuproptosis. The characteristics of the cuproptosis molecular subtypes have not been thoroughly studied in LUAD. Methods: The transcriptomic data and clinical information of 632 LUAD patients were used to investigate the LUAD molecular subtypes that are associated with the cuproptosis-related genes (CRGs), the tumor immune microenvironment, and stemness. The cuproptosis score was constructed using univariate Cox regression and the minor absolute shrinkage and selection operator (LASSO) to quantify the prognostic characteristics. Results: Three different molecular subtypes related to cuproptosis, with different prognoses, were identified in LUAD. Cluster A had the highest cuproptosis score and the worst prognosis. Patients in the high cuproptosis score group had a higher somatic mutation frequency and stemness scores. Patients in the low cuproptosis score group had more immune infiltration and better prognosis. Conclusion: Molecular subtypes of LUAD based on CRGs reflect the differences in LUAD patients. The cuproptosis score can be used as a promising biomarker, which is of great significance to distinguish the relationship between cuproptosis and the immune microenvironment. The cuproptosis signature based on the cuproptosis score and clinical characteristics of individual patients will be useful for guiding immunotherapy in LUAD.

5.
Stem Cell Res Ther ; 13(1): 291, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831906

RESUMO

BACKGROUND: Spinal cord ischemia reperfusion injury (SCIRI) is a complication of aortic aneurysm repair or spinal cord surgery that is associated with permanent neurological deficits. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have been shown to be potential therapeutic options for improving motor functions after SCIRI. Due to their easy access and multi-directional differentiation potential, adipose-derived stem cells (ADSCs) are preferable for this application. However, the effects of ADSC-derived sEVs (ADSC-sEVs) on SCIRI have not been reported. RESULTS: We found that ADSC-sEVs inhibited SCIRI-induced neuronal apoptosis, degradation of tight junction proteins and suppressed endoplasmic reticulum (ER) stress. However, in the presence of the ER stress inducer, tunicamycin, its anti-apoptotic and blood-spinal cord barrier (BSCB) protective effects were significantly reversed. We found that ADSC-sEVs contain tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) whose overexpression inhibited ER stress in vivo by modulating the PI3K/AKT pathway. CONCLUSIONS: ADSC-sEVs inhibit neuronal apoptosis and BSCB disruption in SCIRI by transmitting TSG-6, which suppresses ER stress by modulating the PI3K/AKT pathway.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Isquemia do Cordão Espinal , Estresse do Retículo Endoplasmático , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia , Medula Espinal/patologia , Isquemia do Cordão Espinal/complicações , Isquemia do Cordão Espinal/patologia , Isquemia do Cordão Espinal/terapia
6.
Cell Death Differ ; 29(6): 1164-1175, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34839355

RESUMO

Spinal cord ischemia-reperfusion injury (SCIRI) is a serious trauma that can lead to loss of sensory and motor function. Ferroptosis is a new form of regulatory cell death characterized by iron-dependent accumulation of lipid peroxides. Ferroptosis has been studied in various diseases; however, the exact function and molecular mechanism of ferroptosis in SCIRI remain unknown. In this study, we demonstrated that ferroptosis is involved in the pathological mechanism of SCIRI. Inhibition of ferroptosis could promote the recovery of motor function in mice after SCIRI. In addition, we found that ubiquitin-specific protease 11 (USP11) was significantly upregulated in neuronal cells after hypoxia-reoxygenation and in the spinal cord in mice with I/R injury. Knockdown of USP11 in vitro and KO of USP11 in vivo (USP11-/Y) significantly decreased neuronal cell ferroptosis. In mice, this promotes functional recovery after SCIRI. In contrast, in vitro, USP11 overexpression leads to classic ferroptosis events. Overexpression of USP11 in mice resulted in increased ferroptosis and poor functional recovery after SCIRI. Interestingly, upregulating the expression of USP11 also appeared to increase the production of autophagosomes and to cause substantial autophagic flux, a potential mechanism through which USP11 may enhance ferroptosis. The decreased autophagy markedly weakened the ferroptosis mediated by USP11 and autophagy induction had a synergistic effect with USP11. Importantly, USP11 promotes autophagy activation by stabilizing Beclin 1, thereby leading to ferroptosis. In conclusion, this study shows that ferroptosis is closely associated with SCIRI, and that USP11 plays a key role in regulating ferroptosis and additionally identifies USP11-mediated autophagy-dependent ferroptosis as a promising target for the treatment of SCIRI.


Assuntos
Proteína Beclina-1 , Ferroptose , Traumatismo por Reperfusão , Isquemia do Cordão Espinal , Tioléster Hidrolases , Animais , Autofagia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Camundongos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Isquemia do Cordão Espinal/metabolismo , Isquemia do Cordão Espinal/patologia , Tioléster Hidrolases/metabolismo
8.
J Neuroinflammation ; 18(1): 196, 2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34511129

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a severe traumatic disease which causes high disability and mortality rates. The molecular pathological features after spinal cord injury mainly involve the inflammatory response, microglial and neuronal apoptosis, abnormal proliferation of astrocytes, and the formation of glial scars. However, the microenvironmental changes after spinal cord injury are complex, and the interactions between glial cells and nerve cells remain unclear. Small extracellular vesicles (sEVs) may play a key role in cell communication by transporting RNA, proteins, and bioactive lipids between cells. Few studies have examined the intercellular communication of astrocytes through sEVs after SCI. The inflammatory signal released from astrocytes is known to initiate microglial activation, but its effects on neurons after SCI remain to be further clarified. METHODS: Electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting were applied to characterize sEVs. We examined microglial activation and neuronal apoptosis mediated by astrocyte activation in an experimental model of acute spinal cord injury and in cell culture in vitro. RESULTS: Our results indicated that astrocytes activated after spinal cord injury release CCL2, act on microglia and neuronal cells through the sEV pathway, and promote neuronal apoptosis and microglial activation after binding the CCR2. Subsequently, the activated microglia release IL-1ß, which acts on neuronal cells, thereby further aggravating their apoptosis. CONCLUSION: This study elucidates that astrocytes interact with microglia and neurons through the sEV pathway after SCI, enriching the mechanism of CCL2 in neuroinflammation and spinal neurodegeneration, and providing a new theoretical basis of CCL2 as a therapeutic target for SCI.


Assuntos
Vesículas Extracelulares , Traumatismos da Medula Espinal , Apoptose , Astrócitos/metabolismo , Quimiocina CCL2/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Microglia/metabolismo , Doenças Neuroinflamatórias , Neurônios , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo
10.
J Pineal Res ; 71(4): e12769, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34562326

RESUMO

Spinal cord injury (SCI) is a devastating trauma that leads to irreversible motor and sensory dysfunction and is, so far, without effective treatment. Recently, however, nano-sized extracellular vesicles derived from preconditioned mesenchymal stem cells (MSCs) have shown great promise in treating various diseases, including SCI. In this study, we investigated whether extracellular vesicles (MEVs) derived from MSCs pretreated with melatonin (MT), which is well recognized to be useful in treating diseases, including Alzheimer's disease, non-small cell lung cancer, acute ischemia-reperfusion liver injury, chronic kidney disease, and SCI, are better able to promote functional recovery in mice after SCI than extracellular vesicles derived from MSCs without preconditioning (EVs). MEVs were found to facilitate motor behavioral recovery more than EVs and to increase microglia/macrophages polarization from M1-like to M2-like in mice. Experiments in BV2 microglia and RAW264.7 macrophages confirmed that MEVs facilitate M2-like polarization and also showed that they reduce the production of reactive oxygen species (ROS) and regulate mitochondrial function. Proteomics analysis revealed that ubiquitin-specific protease 29 (USP29) was markedly increased in MEVs, and knockdown of USP29 in MEVs (shUSP29-MEVs) abolished MEVs-mediated benefits in vitro and in vivo. We then showed that USP29 interacts with, deubiquitinates and therefore stabilizes nuclear factor-like 2 (NRF2), thereby regulating microglia/macrophages polarization. In NRF2 knockout mice, MEVs failed to promote functional recovery and M2-like microglia/macrophages polarization. We also showed that MT reduced global N6-methyladenosine (m6 A) modification and levels of the m6 A "writer" methyltransferase-like 3 (METTL3). The stability of USP29 mRNA in MSCs was enhanced by treatment with MT, but inhibited by overexpression of METTL3. This study describes a very promising extracellular vesicle-based approach for treating SCI.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Melatonina , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Animais , Camundongos , Traumatismos da Medula Espinal/terapia , Proteases Específicas de Ubiquitina
11.
Pain Physician ; 24(3): E335-E340, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33988955

RESUMO

BACKGROUND: In the aging population, osteoporosis and related complications have become a global public health problem. Osteoporotic vertebral compression fractures are among the most common type of osteoporotic fractures and patients are at risk of secondary vertebral compression fracture. OBJECTIVES: To identify risk factors for secondary vertebral compression fracture following primary osteoporotic vertebral compression fractures. STUDY DESIGN: Retrospective study. SETTING: Department of Orthopedic, an affiliated hospital of a medical university. METHODS: This retrospective cohort study evaluated the risk factors for secondary vertebral compression fracture in 317 consecutive patients with systematic osteoporotic vertebral compression fractures who received percutaneous vertebroplasty and kyphoplasty or conservative treatment. Patients were divided into secondary vertebral compression fracture (n = 43) and non- secondary vertebral compression fracture (n = 274) groups. We retrospectively analyzed clinical characteristics and radiographic parameters, including gender, age, body mass index, number of primary fractures, primary treatment (percutaneous vertebroplasty and kyphoplasty or conservative treatment), nonspinal fracture history before primary fracture, primary fracture at the thoracolumbar junction, steroid use, bisphosphonate therapy, and Hounsfield units value of L1. RESULTS: Comparison between the groups showed significant differences in age (P = 0.001), nonspinal fracture history (P < 0.001), and Hounsfield units value of L1 (P < 0.001). The receiver operating characteristic curves demonstrated that the optimal thresholds for age and Hounsfield units value of L1 were 75 (sensitivity: 55.8%; specificity: 67.5%) and 50 (sensitivity: 88.3%; specificity: 67.4%), respectively. In multivariate logistic regression analysis, nonspinal fracture history (OR = 6.639, 95% CI = 1.809 - 24.371, P = 0.004) and Hounsfield units value of L1 < 50 (OR = 15.260, 95% CI = 6.957 - 33.473, P < 0.001) were independent risk factors for secondary vertebral compression fracture. LIMITATIONS: The main limitation is the retrospective nature of this study. CONCLUSION: Patients with low Hounsfield units value of L1 or non-spinal fracture history are an important population to target for secondary fracture prevention.


Assuntos
Fraturas por Compressão , Cifoplastia , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Vertebroplastia , Idoso , Fraturas por Compressão/diagnóstico por imagem , Fraturas por Compressão/epidemiologia , Humanos , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Fraturas da Coluna Vertebral/epidemiologia , Fraturas da Coluna Vertebral/etiologia , Resultado do Tratamento
12.
World Neurosurg ; 151: e1051-e1058, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34033955

RESUMO

OBJECTIVE: We performed a retrospective cohort study to investigate the prevalence of and risk factors for asymptomatic spondylotic cervical spinal stenosis (ASCSS) in the setting of lumbar spinal stenosis (LSS). METHODS: A total of 114 patients with a diagnosis of LSS without cervical myelopathy and radiculopathy were grouped into ASCSS and non-ASCSS groups. The medical data and radiological parameters, including age, sex, body mass index, Charlson comorbidity index, symptom duration, redundant nerve roots, dural sac cross-sectional area (DCSA), facet joint angle, lumbar lordosis angle (LLA), pelvic incidence (PI), Torg-Pavlov ratio, and lumbosacral transitional vertebrae, were analyzed. The lumbar stenosis index and cervical stenosis index of the 114 patients were also analyzed. RESULTS: ASCSS occurred in 70 of the 114 patients with LSS (61.4%). The two groups showed significant differences in symptom duration, redundant nerve roots, LLA, DCSA, and PI. On multivariate logistic regression analysis, an LLA >35.85° (P < 0.001) and a DCSA <84.50 mm2 (P = 0.003) were independently associated with ASCSS. The multi-index receiver operating characteristic curve showed that the area under the curve for predicted probability was 0.805 (P < 0.001). Linear regression analysis revealed that cervical stenosis index significantly and positively correlated with the lumbar stenosis index (r = 0.430; P < 0.001). CONCLUSIONS: Our findings suggest that an LLA >35.85° and a DCSA <84.50 mm2 are risk factors for the development of ASCSS. For LSS patients with an enlarged LLA and reduced DSCA, a whole spinal magnetic resonance imaging examination should be performed.


Assuntos
Vértebras Cervicais/patologia , Vértebras Lombares/patologia , Estenose Espinal/epidemiologia , Estenose Espinal/patologia , Espondilose/epidemiologia , Espondilose/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Fatores de Risco
13.
BMC Surg ; 21(1): 170, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781244

RESUMO

BACKGROUND: For a long time, surgical difficulty is mainly evaluated based on subjective perception rather than objective indexes. Moreover, the lack of systematic research regarding the evaluation of surgical difficulty potentially has a negative effect in this field. This study was aimed to evaluate the risk factors for the surgical difficulty of anterior cervical spine surgery (ACSS). METHODS: This was a retrospective cohort study totaling 291 consecutive patients underwent ACSS from 2012.3 to 2017.8. The surgical difficulty of ACSS was defined by operation time longer than 120 min or intraoperative blood loss equal to or greater than 200 ml. Evaluation of risk factors was performed by analyzing the patient's medical records and radiological parameters such as age, sex, BMI, number of operation levels, high signal intensity of spinal cord on T2-weighted images, ossified posterior longitudinal ligament (OPLL), sagittal and coronal cervical circumference, cervical length, spinal canal occupational ratio, coagulation function index and platelet count. RESULTS: Significant differences were reported between low-difficulty and high-difficulty ACSS groups in terms of age (p = 0.017), sex (p = 0.006), number of operation levels (p < 0.001), high signal intensity (p < 0.001), OPLL (p < 0.001) and spinal canal occupational ratio (p < 0.001). Multivariate logistic regression analysis revealed that number of operation levels (OR = 5.224, 95%CI = 2.125-12.843, p < 0.001), high signal intensity of spinal cord (OR = 4.994, 95%CI = 1.636-15.245, p = 0.005), OPLL (OR = 6.358, 95%CI = 1.932-20.931, p = 0.002) and the spinal canal occupational ratio > 0.45 (OR = 3.988, 95%CI = 1.343-11.840, p = 0.013) were independently associated with surgical difficulty in ACSS. A nomogram was established and ROC curve gave a 0.906 C-index. There was a good calibration curve for difficulty estimation. CONCLUSION: This study indicated that the operational level, OPLL, high signal intensity of spinal cord, and spinal canal occupational ratio were independently associated with surgical difficulty and a predictive nomogram can be established using the identified risk factors. Optimal performance was achieved for predicting surgical difficulty of ACSS based on preoperative factors.


Assuntos
Vértebras Cervicais/cirurgia , Descompressão Cirúrgica/métodos , Ossificação do Ligamento Longitudinal Posterior/cirurgia , Idoso , Idoso de 80 Anos ou mais , Vértebras Cervicais/diagnóstico por imagem , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Nomogramas , Valor Preditivo dos Testes , Estudos Retrospectivos , Resultado do Tratamento
14.
Glia ; 69(7): 1782-1798, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33694203

RESUMO

Reactive astrogliosis is a pathological feature of spinal cord injury (SCI). The ubiquitin-proteasome system plays a crucial role in maintaining protein homeostasis and has been widely studied in neuroscience. Little, however, is known about the underlying function of deubiquitinating enzymes in reactive astrogliosis following SCI. Here, we found that ubiquitin-specific protease 18 (USP18) was significantly upregulated in astrocytes following scratch injury, and in the injured spinal cord in mice. Knockdown of USP18 in vitro and conditional knockout of USP18 in astrocytes (USP18 CKO) in vivo significantly attenuated reactive astrogliosis. In mice, this led to widespread inflammation and poor functional recovery following SCI. In contrast, overexpression of USP18 in mice injected with adeno-associated virus (AAV)-USP18 had beneficial effects following SCI. We showed that USP18 binds, deubiquitinates, and thus, stabilizes SRY-box transcription factor 9 (SOX9), thereby regulating reactive astrogliosis. We also showed that the Hedgehog (Hh) signaling pathway induces expression of USP18 through Gli2-mediated transcriptional activation after SCI. Administration of the Hh pathway activator SAG significantly increased reactive astrogliosis, reduced lesion area and promoted functional recovery in mice following SCI. Our results demonstrate that USP18 positively regulates reactive astrogliosis by stabilizing SOX9 and identify USP18 as a promising target for the treatment of SCI.


Assuntos
Gliose , Fatores de Transcrição SOX9 , Traumatismos da Medula Espinal , Ubiquitina Tiolesterase , Animais , Astrócitos/metabolismo , Enzimas Desubiquitinantes/metabolismo , Gliose/patologia , Proteínas Hedgehog/metabolismo , Inflamação/metabolismo , Camundongos , Fatores de Transcrição SOX9/metabolismo , Traumatismos da Medula Espinal/patologia
15.
Redox Biol ; 41: 101932, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33714739

RESUMO

Pathologically, blood-spinal-cord-barrier (BSCB) disruption after spinal cord injury (SCI) leads to infiltration of numerous peripheral macrophages into injured areas and accumulation around newborn vessels. Among the leaked macrophages, M1-polarized macrophages are dominant and play a crucial role throughout the whole SCI process. The aim of our study was to investigate the effects of M1-polarized bone marrow-derived macrophages (M1-BMDMs) on vascular endothelial cells and their underlying mechanism. Microvascular endothelial cell line bEnd.3 cells were treated with conditioned medium or exosomes derived from M1-BMDMs, followed by evaluations of endothelial-to-mesenchymal transition (EndoMT) and mitochondrial function. After administration, we found conditioned medium or exosomes from M1-BMDMs significantly promoted EndoMT of vascular endothelial cells in vitro and in vivo, which aggravated BSCB disruption after SCI. In addition, significant dysfunction of mitochondria and accumulation of reactive oxygen species (ROS) were also detected. Furthermore, bioinformatics analysis demonstrated that miR-155 is upregulated in both M1-polarized macrophages and microglia. Experimentally, exosomal transfer of miR-155 participated in M1-BMDMs-induced EndoMT and mitochondrial ROS generation in bEnd.3 cells, and subsequently activated the NF-κB signaling pathway by targeting downstream suppressor of cytokine signaling 6 (SOCS6), and suppressing SOCS6-mediated p65 ubiquitination and degradation. Finally, a series of rescue assay further verified that exosomal miR155/SOCS6/p65 axis regulated the EndoMT process and mitochondrial function in vascular endothelial cells. In summary, our work revealed a potential mechanism describing the communications between macrophages and vascular endothelial cells after SCI which could benefit for future research and aid in the development of potential therapies for SCI.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Células Endoteliais/metabolismo , Humanos , Recém-Nascido , Macrófagos/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Traumatismos da Medula Espinal/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
16.
Eur Spine J ; 30(6): 1495-1500, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33387050

RESUMO

PURPOSE: This study aims to assess the nerve function deficient recovery in surgically treated patients with cervical trauma with spinal cord injury (SCI) in chronic stage and figure out prognostic predictors of improvement in impairment and function. METHODS: We reviewed the clinical and radiological data of 143 cervical SCI patients in chronic stage and divided into non-operative group (n = 61) and operative group (n = 82). The severity of neurological involvement was assessed using the ASIA motor score (AMS) and Functional Independence Measure Motor Score (FIM MS). The health-related quality of life was measured using the SF-36 questionnaire. Correspondence between the clinical and radiological findings and the neurological outcome was investigated. RESULTS: At 2-year follow-up, surgery resulted in greater improvement in AMS and FIM MS than non-operative group. Regression analysis revealed that lower initial AMS (P = 0.000), longer duration after injury (P = 0.022) and injury above C4 level (P = 0.022) were factors predictive of lower final AMS. Longer duration (P = 0.020) and injury above C4 level (P = 0.010) were associated with a lower FIM MS. SF-36 scores were significantly lower in higher age (P = 0.015), female patients (P = 0.009) and patients with longer duration (P = 0.001). CONCLUSION: It is reasonable to consider surgical decompression in patients with cervical SCI in chronic stage and persistent spinal cord compression and/or gross cervical instability. Initial AMS, longer duration, injury above C4 level, higher age and female patients are the five major relevant factors of functional recovery.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Descompressão Cirúrgica , Feminino , Seguimentos , Humanos , Qualidade de Vida , Recuperação de Função Fisiológica , Fatores de Risco , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/cirurgia , Resultado do Tratamento
17.
Acta Biomater ; 122: 325-342, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348062

RESUMO

Osteoarthritis (OA) is a regressive joint disease that mainly affects the cartilage and surrounding tissues. Mounting studies have confirmed that the paracrine effect is related to the potential mechanism of mesenchymal stem cell (MSC) transplantation and that small extracellular vesicles (sEVs) play an imperative role in this paracrine signaling. In fact, hypoxia can significantly improve the effectiveness of MSC transplantation in various disease models. However, it remains unknown whether MSCs in the state of a hypoxic environment can enhance OA cartilage repair and whether this enhancement is mediated by sEV signaling. The primary aim of the present study was to determine whether sEVs from MSCs in the state of hypoxia (Hypo-sEVs) have a superior effect on OA cartilage repair relative to sEVs from MSCs in the normoxia (Nor-sEVs) state. By using an OA model and performing in vitro studies, we verified that Hypo-sEV treatment facilitated the proliferation, migration, and apoptosis suppression of chondrocytes to a greater extent than Nor-sEV treatment. Furthermore, we verified the functional role of sEV miR-216a-5p in the OA cartilage repair process. We also identified JAK2 as the target gene of sEV miR-216a-5p through a series of experiments. Our findings indicated that HIF-1α induces hypoxic BMSCs to release sEVs, which promote the proliferation, migration, and apoptosis inhibition of chondrocytes through the miR-216a-5p/JAK2/STAT3 signaling pathway. Therefore, hypoxic pretreatment is a prospective and effective method to maximize the therapeutic effect of MSC-derived sEVs on OA.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Cartilagem , Humanos , Hipóxia , MicroRNAs/genética , Osteoartrite/genética , Osteoartrite/terapia , Estudos Prospectivos
18.
Mol Ther Nucleic Acids ; 21: 900-915, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32810692

RESUMO

Increasing evidence indicates that lymphocyte cytosolic protein 1 (LCP1) overexpression contributes to tumor progression; however, its role in osteosarcoma (OS) remains unclear. We aimed to investigate the potential effect of LCP1 in OS and the underlying mechanisms. We first demonstrated that LCP1 is upregulated in OS cell lines and tissues. Then, we found that aberrant expression of LCP1 could induce the proliferation and metastasis of OS cells in vitro and in vivo by destabilizing neuregulin receptor degradation protein-1 (Nrdp1) and subsequently activating the JAK2/STAT3 signaling pathway. When coculturing OS cells with bone marrow-derived mesenchymal stem cells (BMSCs) in vitro, we validated that oncogenic LCP1 in OS was transferred from BMSCs via exosomes. Moreover, microRNA (miR)-135a-5p, a tumor suppressor, was found to interact upstream of LCP1 to counteract the pro-tumorigenesis effects of LCP1 in OS. In conclusion, BMSC-derived exosomal LCP1 promotes OS proliferation and metastasis via the JAK2/STAT3 pathway. Targeting the miR-135a-5p/LCP1 axis may have potential in treating OS.

19.
J Nanobiotechnology ; 18(1): 105, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711535

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a catastrophic injury that can cause irreversible motor dysfunction with high disability. Exosomes participate in the transport of miRNAs and play an essential role in intercellular communication via transfer of genetic material. However, the miRNAs in exosomes which derived from neurons, and the underlying mechanisms by which they contribute to SCI remain unknown. METHODS: A contusive in vivo SCI model and a series of in vitro experiments were carried out to explore the therapeutic effects of exosomes. Then, a miRNA microarray analysis and rescue experiments were performed to confirm the role of neuron-derived exosomal miRNA in SCI. Western blot, luciferase activity assay, and RNA-ChIP were used to investigate the underlying mechanisms. RESULTS: The results indicated that neuron-derived exosomes promoted functional behavioral recovery by suppressing the activation of M1 microglia and A1 astrocytes in vivo and in vitro. A miRNA array showed miR-124-3p to be the most enriched in neuron-derived exosomes. MYH9 was identified as the target downstream gene of miR-124-3p. A series of experiments were used to confirm the miR-124-3p/MYH9 axis. Finally, it was found that PI3K/AKT/NF-κB signaling cascades may be involved in the modulation of microglia by exosomal miR-124-3p. CONCLUSION: A combination of miRNAs and neuron-derived exosomes may be a promising, minimally invasive approach for the treatment of SCI.


Assuntos
Astrócitos/metabolismo , Exossomos/metabolismo , MicroRNAs , Microglia/metabolismo , Traumatismos da Medula Espinal , Animais , Células Cultivadas , Exossomos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neurônios/química , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia
20.
J Nanobiotechnology ; 18(1): 72, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404105

RESUMO

BACKGROUND: Spinal cord injury (SCI) has a very disabling central nervous system impact but currently lacks effective treatment. Bone marrow-derived macrophages (BMDMs) are recruited to the injured area after SCI and participate in the regulation of functional recovery with microglia. Previous studies have shown that M2 microglia-derived small extracellular vesicles (SEVs) have neuroprotective effects, but the effects of M2 BMDM-derived sEVs (M2 BMDM-sEVs) have not been reported in SCI treatment. RESULTS: In this study, we investigated the role of M2 BMDM-sEVs in vivo and in vitro for SCI treatment and its mechanism. Our results indicated that M2 BMDM-sEVs promoted functional recovery after SCI and reduced neuronal apoptosis in mice. In addition, M2 BMDM-sEVs targeted mammalian target of rapamycin (mTOR) to enhance the autophagy level of neurons and reduce apoptosis. MicroRNA-421-3P (miR-421-3p) can bind to the 3' untranslated region (3'UTR) of mTOR. MiR-421-3p mimics significantly reduced the activity of luciferase-mTOR 3'UTR constructs and increased autophagy. At the same time, tail vein injection of inhibitors of SEVs (Inh-sEVs), which were prepared by treatment with an miR-421-3p inhibitor, showed diminished protective autophagy of neuronal cells in vivo. CONCLUSIONS: In conclusion, M2 BMDM-sEVs inhibited the mTOR autophagy pathway by transmitting miR-421-3p, which reduced neuronal apoptosis and promoted functional recovery after SCI, suggesting that M2 BMDM-sEVs may be a potential therapy for SCI.


Assuntos
Vesículas Extracelulares , Macrófagos/metabolismo , MicroRNAs , Traumatismos da Medula Espinal/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...